Updated Results of a Phase 1a Trial of STAR-0215 for Hereditary Angioedema

William Lumry¹, Theodora Cohen², Michele Gunsior², Kristine Bernard², Pamela Gustafson² and Christopher Morabito² ¹ARRA Research Center, Dallas, Texas, USA; ²Astria Therapeutics, Inc., Boston, Massachusetts, USA;

Presented at the American Academy of Allergy, Asthma and Immunology, February 23-26, 2024, Washington, DC

OBJECTIVE

Confirm the feasibility of Q3M and Q6M (every 3 and 6 months) administration of STAR-0215 with complete follow-up from Phase 1a cohorts.

INTRODUCTION

- Hereditary angioedema (HAE), a rare genetic disorder, causes episodic attacks of localized swelling which can be disabling and potentially fatal.
- In patients with HAE due to C1-inhibitor deficiency or dysfunction, normal regulation of plasma kallikrein activity is lacking leading to increases in plasma kallikrein activity and release of bradykinin resulting in angioedema attacks.
- STAR-0215 is an investigational monoclonal antibody inhibitor of plasma kallikrein with long-lasting activity enabled by a YTE-modified Fc domain.
- Results through final follow-up of the single ascending dose Phase 1a trial (NCT05477160) with follow-up through Day 224 after single doses up to 1200 mg SC aim to demonstrate that STAR-0215 is a long-acting inhibitor of plasma kallikrein that can be effectively administered Q3M and/or Q6M.¹

METHODS

Healthy adults (18 to 60 years old) were randomized 3:1 to STAR-0215 or placebo. Subjects received a single dose of STAR-0215 100, 300, 600, or 1200 mg SC or 600 mg intravenous (IV) or placebo. This report is an analysis through day (D) 224 in all cohorts.

Safety and Tolerability

• Assessed from adverse events, vital signs, physical examinations, ECG and clinical laboratory results.

Pharmacokinetic (PK) and Anti-drug antibody (ADA) Assessments

- Blood samples were collected at regular intervals and serum was analyzed for free STAR-0215 and ADA to STAR-0215 using validated methods.
- Standard two-compartment PK model with adjustments for dose dependency and bioavailability was established and updated with final PK data for simulations of Q3M and Q6M SC dosing and administration profiles.

Pharmacodynamic (PD) Assessments

• Ex vivo FXIIa-induced plasma kallikrein activity was measured using a reporter-substrate enzymatic assay as well as by changes in %cHWMK levels analyzed by western blot.

RESULTS

Safety and Tolerability

Total of 41 subjects have participated, 31 participant were administered STAR-0215. Rates of TEAEs were 21/31 (68%) and 6/10 (60%) for subjects that received one dose of STAR-0215 and placebo, respectively.

- No serious or severe adverse events, or discontinuations due to an adverse event.
- All related TEAEs were mild in severity.
- Most common related treatment emergent adverse events occurring in \geq 2 STAR-0215 subjects include injection site reactions of erythema (22.6%), pruritus (12.9%), swelling (12.9%), and headache (6.5%).

Figure 1. Single-Dose Pharmacokinetic Profile

- Rapid increases in concentrations after SC and IV administration.
- Mean concentrations remained >12 μ g/mL after all single doses (except 100 mg SC) for ≥84 days.

Table 1. Summary of Pharmacokinetic Parameters of STAR-0215

- Mean half-life ($t_{1/2}$) up to 109 days.
- STAR-0215 concentration associated with anticipated clinical benefit achieved 11 hours after 600 mg SC dose $(t_{12\mu g/mL}(hours)).$

	STAR-0215 100 mg SC (N = 7)	STAR-0215 300 mg SC (N = 6)	STAR-0215 600 mg SC (N = 6)	STAR-0215 1200 mg SC (N = 6)	STAR-0215 600 mg IV (N = 6)
C _{max} (µg/mL), mean (SD)	6.4 (2.09)	24.9 (6.06)	64.0 (13.36)	154.2 (40.72)	203.2 (27.17)
C _{ave} (µg/mL), Day 84, mean (SD)	2.7 (1.70)	12.5 (4.47)	35.7 (5.09)	72.7 (16.18)	55.5 (11.24)
C _{ave} (µg/mL), Day 168, mean (SD)	1.0 (1.16)	6.5 (2.87)	13.4 (2.32)	41.2 (7.24)	32.1 (5.09)
T _{max} (days), mean (SD)	13.5 (9.74)	7.5 (4.27)	6.3 (3.29)	4.8 (0.41)	0.13 (0.10)
t _{12µg/mL} (hours), mean	N/A	25	11	7	<0.1
t _{1/2} (days), mean (SD)	69 (21.3)	83 (12.8)	94 (20.9)	94 (11.8)	109 (31.6)

Abbreviations: C_{max}, peak drug concentration; C_{ave}, average concentration on specified day; T_{max}, time to reach peak drug concentration; t₁₂ µg/mL, time to reach concentration threshold; $t_{1/2}$, half-life.

• Treatment-emergent ADAs were observed in 11 subjects from all cohorts combined, all first observed on or after D140. ADAs were determined not to affect the pharmacokinetics or pharmacodynamics of STAR-0215.

- data, will support Phase 3 dose selection.

loading dose and Q3M or Q6M maintenance dosing.

CONCLUSIONS • STAR-0215 was well-tolerated at all doses administered and appears to have a favorable safety profile.

• Rapid, linear, and durable STAR-0215 concentrations were demonstrated after single doses > 100 mg and achieved clinically relevant kallikrein inhibition, consistent with or superior to those achieved by lanadelumab in Phase 1.² • These results support the ongoing Phase 1b/2 ALPHA-STAR trial (NCT05695248) in people with hereditary angioedema.

• Initial results from the ALPHA-STAR trial (expected in Q1 2024) will serve as the proof of concept as a preventative medicine administered as infrequently as Q6M for people with HAE and, if positive, combined with this

Scan to access PDF of this poste

Figure 2. Pharmacodynamic Activity

Statistically significant % inhibition of FXIIa-induced plasma kallikrein activity compared to predose was observed using both the reporter substrate enzyme activity assay (left) and western blot assessment of %cHMWK levels (right). • Percent inhibition of plasma kallikrein consistent with clinical activity was observed for doses \geq 300 mg.

Figure 3. Pharmacokinetic Model with Simulations

STAR-0215 concentrations are sustained above the target threshold (12 µg/mL) when administered, SC, with a